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Abstract:  Workflows are increasingly used in science to manage complex computations and data 
processing at large scale.  Intelligent workflow systems provide assistance in setting up parameters 
and data, validating workflows created by users, and automating the generation of workflows from 
high-level user guidance. These systems use semantic workflows that extend workflow 
representations with semantic constraints that express characteristics of the data and analytic 
models. Reasoning algorithms propagate these semantic constraints throughout the workflow 
structure, select executable components for underspecified steps, and suggest parameter values.  
Semantic workflows also enhance provenance records with abstract steps that reflect the overall data 
analysis method rather than just execution traces. The benefits of semantic workflows include: 1) 
improving the efficiency of scientists, 2) allowing inspectability and reproducibility, and 3) 
disseminating expertise to new researchers.  Intelligent workflow systems are an instance of 
provenance-aware software, since they both use and generate provenance and metadata as the data 
is being processed. Provenance-aware software enhances scientific analysis by propagating 
upstream metadata and provenance to new data products. Through the use of provenance standards, 
such as the recent W3C PROV recommendation for provenance on the Web, provenance-aware 
software can significantly enhance scientific data analysis, publication, and reuse. New capabilities 
are enabled when provenance is brought to the forefront in the design of software systems for 
science. 
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1.      INTRODUCTION 

 
Modern data science requires managing the increasing complexity of data analysis. Scientific 
workflows are being used in many areas of science to address that complexity [Gil 2009; Gil et al 
2007a; Taylor et al 2007]. Workflows represent complex applications as a dependency graph of 
computations linked through control or data flow.  Workflow systems manage the execution of these 
complex computations, record provenance of how results are generated, and allow end users with 
little or no programming skills to create applications by reusing pre-defined workflows built by others.   
 
This paper describes the benefits of workflows to scientists by giving examples from the Wings 
workflow system [Gil et al 2011a; Gil et al 2011b] based on our prior work on ecological modeling 
reported in [Gil et al 2011c].  First, we describe basic concepts in workflows as a programming 
paradigm centered on code encapsulation and reuse, software composition, and abstraction.  
Second, we introduce semantic workflows as a new approach that captures semantics and metadata 
about both data and software.  We also introduce intelligent workflow systems, such as Wings, that 
use semantic workflows to assist users in a variety of ways, including validating workflows, setting up 
parameters, dynamically selecting models that are appropriate for the data, and automatically 
generating workflow details.  Third, we highlight how workflow systems are provenance-aware 
software in that they generate metadata and provenance of results to facilitate inspectability and 
reproducibility.  Finally, we discuss how workflows can improve software stewardship in science. 
 
Additional details and publications for all the topics discussed here can be found at [Wings 2014]. 
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Table 1. Major Benefits of Scientific Workflows 
 Problem addressed Workflow Approach Benefit to User 
(1) Scientists familiar with few (one) 

programming languages 
Encapsulation of codes from the 

command line 
Reuse of code in any language or 

package, across users and labs 
(2) Scientists who are not 

programmers 
Simple programming paradigm 

focused on dataflow and 
software reuse and composition  

Non-programmers can reuse existing 
workflows or compose new ones 
out of existing codes 

(3) Before using a model, data has to 
be correctly pre-processed but 
this takes a lot of work and is not 
always well documented 

Inclusion of pre-processing steps 
in workflows in order to capture 
an end-to-end method 

Scientists unfamiliar with a model can 
easily experiment with it, no extra 
effort needed to prepare the data 

(4) Hard to find an appropriate 
visualization for analysis results 

Include visualization steps in 
workflows 

Scientists can easily understand 
results from running new models  

(5) Quality control and data cleaning 
are re-implemented by many, 
and not always properly  

Capture common quality control 
and data cleaning steps in 
workflows 

Scientists can easily reuse expert-
grade quality control and data 
cleaning methods 

(6) Hard to keep track when 
continuously running analyses 
and exploring new codes 

Automatic recording of any 
executions, including codes, 
parameter settings, and data 
products 

Comprehensive record of every test 
done, variants explored, and data 
results ever generated 

(7) Reproducing other work takes a 
lot of time and papers often do 
not contain enough details 

Automatic recording of provenance 
for data analysis results 

Anyone can easily inspect the details 
of the workflow used to get a result, 
reproduce it and obtain new results 

(8) Access to high performance 
computing resources takes 
substantial effort 

Automatic mapping of jobs to 
resources, optimization, 
execution monitoring 

Processing data at very large scale is 
possible even if unfamiliar with high 
performance computing techniques 

 
2. HOW WORKFLOWS CAN BENEFIT SCIENTISTS 
 
Workflow systems are designed to make scientists more productive and accelerate the pace of 
research. This section gives an introduction to workflows and discusses major benefits of workflows to 
scientists, summarized in Table 1.  There are many workflow systems with a wide range of features, 
here we focus on capabilities supported in Wings and that appear in other workflow systems.  For 
further information about workflow systems and capabilities, see [Gil 2009; Taylor et al 2007].   
 
Data science workflows capture complex data analysis methods as multi-step computations. 
Workflows are essentially data structures that describe those methods declaratively.  Workflow 
systems can then operate on those workflows and do useful tasks that relieve scientists of the 
burdens associated with managing the applications manually. Each workflow step is a piece of 
software (code) that is only responsible for a fragment of workflow functionality so that many 
components need to be connected to execute the overall data analysis task.   
 
Figure 1 shows a simple workflow on the left to carry out a daily metabolism calculation in a river site 
for a given time period.  It includes a night time model and a reaeration model that are used to 
calculate metabolism estimates during the night and day respectively.  The workflow uses as input 
hydrological data collected by in-situ sensors for that day.  The workflow includes pre-processing 
steps to clean the data, and a step to create several plots of the metabolism estimates.  The top right 
of Figure 1 shows a screenshot of a workflow editor, with several workflows listed and three workflows 
shown to illustrate different approaches to data analysis.  For example, the workflow in the middle 
does not include the night time model, and the workflow on the right does not consider a separate 
reaeration model.  The bottom right of Figure 1 lists different runs of some of these workflows, and the 
details of one of the runs linked to the input data, parameter settings, and results. 
 
(1) Workflows Facilitate Reuse by Encapsulating Heterogeneous Codes. In our experience, 
scientists are often self-taught programmers that learn one or two programming languages, so they 
are deterred from reusing code that is implemented in a different language that requires installation of 
libraries or other setup.  This creates a barrier for software reuse.  For example, a scientist that is 
familiar with Fortran will not be able to easily use another scientist’s code written in Python.  In a 
workflow, each component can be implemented in a different language, as long as the code can be 
encapsulated to be invoked from a command line.  Figure 1 illustrates this as (1), where the night time 
model can be in Java, the metabolism calculation in R, and the plotting routine in Python.  The 
workflow system takes care of setting up the execution for each so users do not have to, greatly 
facilitating code reuse across users and across labs. 
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Figure 1. Workflow systems have many benefits to scientists: 1) models and codes implemented in different 
languages are encapsulated and easily used within the same workflow, facilitating code reuse to others with no 
expertise in those languages; 2) non-programmers can easily understand and use workflows; 3) workflows can 
include pre-processing steps necessary to use models, 4) workflows can include steps to generate visualizations 
of model results, 5) workflows can include quality control and data cleaning steps, 6) workflow runs are tracked 
by the system to document provenance of results, 7) reproducing prior work is easy through the reuse of a 
workflow, 8) workflow systems can process large datasets on high-end computing resources (grids, clusters, 
clouds) behind the scenes. 

 
(2) Workflows Offer a Simple Programming Paradigm that Makes them Accessible to Non-
Programmers.  Many scientists are not programmers, and yet they would like to run codes to do data 
analysis.  They do a lot of work on spreadsheets, which is very time consuming and prone to error.  
Although some workflow languages are full-fledged programming languages, some workflow 
languages are designed to use very simple programming constructs that are intuitive and easily 
adopted by non-programmers. Wings uses simple dataflow and very limited forms of iteration.  Figure 
1(2) shows a snapshot of the Wings user interface. We have found that non-sophisticated computer 
users (at the level of high-school students) can effectively use workflows to solve problems after 
minimal training. 
 
(3) Workflows Facilitate Data Preparation.  Before using a model, the data has to be formatted and 
prepared to fit what the model needs.  Scientists spend considerable amounts of effort just pre-
processing and preparing data.  It is estimated that scientists spend between 60%-80% of a project’s 
effort collecting and preparing data before doing new science.  Our studies of workflow repositories 
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are consistent with these estimates.  Workflows can include data preparation steps, as shown in 
Figure 1(3), which facilitates the adoption of new models.  Scientists can use the workflow to try out 
new models with minimal effort investment. 
 
(4) Workflows Facilitate Data Visualization.  Creating appropriate visualizations requires significant 
effort.  Workflows can include data visualization steps, as shown in Figure 1(4).  Scientists can use 
the workflow to run a model and get the visualizations favored by model developers.   
 
(5) Workflows Facilitate Quality Control of Sensor Data.  Raw data often contains errors and other 
problems that need to be corrected.  Scientists often do not have the expertise or the time to write 
adequate quality control and data cleaning codes.  Workflows can include well-designed and 
implemented data preparation steps, as shown in Figure 1(5).  Scientists can easily reuse expert-
grade methods for quality control captured as workflows. 
 
(6) Workflow Executions Are Automatically Recorded to Document Provenance of New 
Results.  Scientists continuously run analyses, exploring different methods and different parameter 
configurations and settings.  They have to keep track of all these executions manually, often by 
creating README files or directory structures with dates in them.  Workflow systems automatically 
record the execution of workflows, the data used and generated, the parameter settings, the versions 
of the codes used, and if desired the intermediate data products.  Figure 1(6) shows a screenshot of a 
browser of execution runs in Wings.  Scientists can have a comprehensive history of every test done, 
variants explored, and results ever generated. 
 
(7) Workflows Facilitate Inspectability and Reproducibility. Reproducing the work that others 
have done is important to establish baselines and compare improvements with one’s own work, 
understand the details of the method used, and verify the results reported by the authors.  In prior 
work, we proposed an approach to quantify the effort required to reproduce the method in a published 
paper.  In our study, it took three months of work, and according to our colleagues this is not an 
unusual amount of effort.  Studies have shown that many papers lack the information necessary for 
others to reproduce what was done.  Workflows record the workflow used to create new results, which 
documents their provenance and facilitates inspectability and reproducibility.  Figure 1(7) illustrates 
how the provenance of each result is recorded in detail, so that others can inspect and reproduce the 
work. 
 
(8) Workflows Facilitate Access to High-End Computing.  Instead of investing significant effort in 
learning to use high-end computing resources (clusters, grids, clouds), users can simply submit their 
workflow and the workflow system can take care of all the execution details by allocating resources, 
performing optimizations, and monitoring execution progress. 
 
Benefits of workflow systems also include interfaces with data repositories, access to third party web 
services, and management of workflow repositories among many others [Taylor et al 2007]. 
 
3. INTELLIGENT WORKFLOW SYSTEMS 
 
Intelligent workflow systems use semantic representations to reason about applications and data and 
offer novel capabilities, summarized in Table 2.  Wings is an intelligent workflow system that builds on 
Semantic Web standards to represent characteristics of workflows, software, and data.   
 
Figure 2 shows a semantic workflow in Wings.  It is a simplification of the workflow in Figure 1, as 
there is no night time model and only reaeration estimates are used to estimate metabolism.  Dataset 
have metadata, shown in yellow.  Components have associated constraints as we explain below.  
Wings includes workflow reasoning algorithms that propagate the constraints within the workflow 
structure and ensure consistent constraints for any given dataset and component [Gil et al 2011a].  
An intelligent user interface uses the results of these algorithms to guide the user [Gil et al 2010b].  
 
(9) Validating Workflow to Ensure Correct Use of Software.  Wings has a validation capability, 
shown in Figure 2(9), that checks the dataflow and all constraints, such as those shown in Figure 3. 
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Table 2. Intelligent Workflow Systems Offer Additional Benefits to Scientists 
 Problem addressed Intelligent Capability Benefit to User 
(9) Errors are the norm when 

programming 
Validation of proper composition of 

components  
System tracks errors so user does not 

need to do it 
(10) Models/codes are not always 

properly used, 
documentation is often 
hard to follow or remember 

Representation of use constraints 
for models/code 

System is aware of the correct use of 
models/code and can enforce what 
designers intend 

(11) Metadata has to be generated 
by hand for analytic results 

Automatic propagation of 
metadata in workflow 

Analytic results always have associated 
metadata 

(12) Model parameters are often 
hard to set up 

Some model parameters can be 
automatically set up by system 

Users do not have to track model 
parameters, easy to adopt new 
models/codes 

(13) Scientists often prefer specific 
implementations when 
several are available for the 
same method/model  

A workflow step can represent a 
class of workflow components 
that is instantiated according to 
user preferences 

System can ensure the reproducibility of 
a method even if implemented with 
different codes 

(14) Scientists may want to use a 
workflow in another 
platform or workflow system 

Representation of workflow 
independent of workflow system 
language and implementation 

Users can reuse the workflow in 
different workflow systems, and in 
other kinds of scientific environments 

(15) Different data requires using 
different models for the 
same task/analysis 

Dynamic model selection based on 
data characteristics 

Users can process streaming data with a 
workflow that is automatically and 
dynamically adapted to the data 

(16) Need to process data 
collections in parallel but 
they have different sizes 

Workflow language that supports 
intensional descriptions of sets  

System automatically generates as 
many jobs as needed to the size of the 
dataset at runtime 

(17) Hard to find data needed from 
general data sources 

Reasoning about constraints in 
workflow, derive requirements of 
input data 

System automatically queries and 
retrieves input data needed to run a 
model/code 

 
(10) Enforcing Correct Use of Models and Code.  Models and code are not always properly 
documented, and even after reading documentation it is hard to remember the details.  Intelligent 
workflow systems can represent the constraints that govern the use of components.  For example, a 
model for reaeration is O’Connors Dobbins, and it requires that the river depth be at least 0.61m.  
This is a constraint that can be added to that component, shown in Figure 2(10). Wings will check that 
the data used for the component complies with the constraints. 
 
(11) Automatically Propagating Metadata.  Many data catalogs have extensive metadata, but when 
the data is downloaded and processed to generate new results the metadata for those new results 
has to be manually added. But this metadata propagation can be automated.  In Figure 2(11), the 
“site” metadata of the input, representing where the sensors were, is the same “site” metadata for the 
metabolism output. Wings can automatically generate such metadata.   
 
(12) Suggesting Parameter Settings.  Some model parameters can be set up automatically given 
the context of the workflow.  In Figure 2(12), the lat/long of the metabolism calculation is the same of 
the original sensor data.  Setting this automatically saves scientists time. 
 
(13) Reproducing Methods Even with Different Implementations.  The steps in a semantic 
workflow can be classes of methods or implementations.  When reusing a workflow the steps can be 
instantiated to the specific running codes available in the execution environment.  This facilitates 
reproducibility, particularly with evolving versions of software. 
 
(14) Reuse of Workflows in Other Platforms.  Publishing a semantic workflow as semantic web 
objects makes it openly accessible and can be imported to other applications.  
 
(15) Dynamic Selection of Models to Suit Data Characteristics.  Daily data can have varying 
characteristics, requiring different models.  For example, Figure 2(15) shows three reaeration 
methods that are each more appropriate depending on the flow, depth, or velocity of the stream.  
Wings can select an appropriate model based on the daily data. 
 
(16) Processing Data Collections of Varying Sizes.  A semantic workflow can include annotations 
to manage data collections [Gil et al 2009]. Figure 2(16) shows the workflow using with daily data for 
any number of days, and the system will expand the workflow automatically to parallelize the 
processing for each day.  This saves scientists the effort to write specific scripts for data collections. 
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Figure 2. Wings is an intelligent workflow system that attaches semantic metadata and constraints to datasets (in 
yellow) and components (in purple), with significant benefits to scientists: 9) the workflow can be validated, 10) 
the correct use of models can be enforced based on use constraints, 11) metadata is automatically generated, 
12) some model parameters can be automatically set up, 13) the workflow can be reproduced with different 
implemented codes, 14) the workflow can be used in another platform, 15) the workflow is dynamically 
configured to suit the data, 16) the system can manage the parallel processing of dataset collections, 17) the 
system can find auxiliary data as needed for the workflow and the scientist’s own data. 

(17) Finding Relevant Data.  The constraints in a semantic workflow describe the requirements on 
the input data.  Wings can use those constraints to query data repositories, and retrieve ancillary data 
needed to run the workflow.  This saves the scientists time to find and retrieve data. 
 
4. PROVENANCE-AWARE SOFTWARE 
 
A major distinguishing characteristic of workflow systems is that they are provenance-aware software. 
Provenance-aware software generates, maintains, and uses provenance and metadata that describes 
its output based on provenance and metadata of the input datasets.  Metadata is associated with data 
and serves as a description or context for the data.  Examples of metadata include use license, 
format, and statistical properties of data.  Provenance is a kind of metadata that describes how the 
data was created.  For example the metabolism results in Figure 2 could have the workflow itself as 
provenance, as the workflow describes the computations that were carried out to generate the results.   
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Provenance-aware software has, at a minimum, the ability to generate:  

1. A provenance trace of all the software components used to analyze the initial data.  This 
allows anyone trying to understand how the outputs were generated by inspecting the 
provenance trace to see the software used, its configuration, and all the intermediate data. 

2. Metadata assertions about new data products generated.  For example, a format converter 
component that takes an input dataset with location metadata specifying a certain river 
segment will generate a dataset that should have as metadata also that river segment. 

 
4.1   Use and Generation of Provenance 
Although many workflow systems generate provenance traces [Moreau et al 2010], only Wings 
generates additional provenance that facilitates reuse and reproducibility.  Several novel features of 
Wings support the generation of implementation-independent provenance: 
 

• Specification of abstract classes of components.  In Figure 2, the reaeration step 
represents a class of reaeration models, and one is selected at runtime by the system. 

• Specification of types of data that abstract from particular formats.  The datasets in the 
workflow can be conceptually described based on their contents, rather than their formats. 

• Separation of algorithms from implementation of components.  The steps of the 
workflow can be component classes, and a particular implementation is selected at runtime.   

• Publication of workflow template in addition to workflow run.  In addition to the provenance 
record of a workflow execution, the generic reusable workflow can also be exported. 

 
All workflow executions with their provenance can be exported as Linked Data using the W3C PROV 
standard [Moreau et al 13].  Unlike other provenance systems, Wings provenance records include 
semantic metadata associated to datasets, which can be used to retrieve workflows based on results. 
 
4.2   Use and Generation of Metadata 
In Wings, each workflow component must be described in the workflow system so that it can properly 
use and generate metadata.  Workflow systems always have a description for each workflow 
component of its input data, input parameters, and outputs.  In many cases the types of the data are 
indicated.  In Wings, we have developed several approaches to use and generate metadata.  To be 
provenance aware, each workflow component needs to include constraints in terms of: 
 
• Use the metadata of its input data to validate that the component is used properly.  For 

each component, we require a specification of the constraints that it imposes on its inputs.  This 
means that the system has to look at the metadata of the input data and check that it complies 
with those constraints.  For example, for a night time model a constraint could express that the 
input data must be between dusk and dawn.  Input datasets have to be consistent among 
themselves and with parameters.  For example, all datasets have to be for the same location.  
Any dataset that does not comply with the constraints is not to be used with the component.  

• Generate metadata of its output datasets.  For each component, we require a specification of 
constraints for how the metadata of its outputs relates to the metadata of its inputs.  For example, 
if the input data was collected for a location, the output metabolism is also for that same location.   

 
One important limitation of Wings that is an active research area is describing the internal structure of 
data files.  In Wings, a file can have associated metadata to describe what it contains.  For example, 
the metadata about the hourly data in our workflow could state that the file contains velocity, depth, 
temperature, and barometric pressure. However, even if it is a csv file and the data is a structured 
time series, we cannot indicate which column corresponds to velocity, depth, and the others.  
Addressing this will require more elaborate representations of metadata. 
 
Wings also does not enforce or encourage the adoption of metadata standards.  It would be beneficial 
to describe software and datasets in terms of standard representations of the domain. 
 
5. IMPROVING SOFTWARE STEWARDSHIP IN SCIENCE 
	
  
Geosciences software embodies important scientific knowledge that should be explicitly captured, 
curated, managed, and disseminated.  Recurring issues of provenance and uncertainty in the context 
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of data could be better addressed with improved treatment of geoscience software: it is easy to see 
that nothing describes data more precisely than the software that generates or uses the data. 
Scientists recognize the value of sharing software to avoid replicating effort or to reproduce results 
from others.  However, the stewardship of software in geosciences must be greatly improved.  First, 
there is very limited, disconnected, and ad-hoc sharing of geoscience software.  Modeling frameworks 
have dramatically improved model sharing, but focus on models with broad interest and are not 
positioned to attract the many hundreds or thousands of models developed across geosciences.  
Second, while model software is valued, there are orders of magnitude more codes devoted to 
preparing data for input to a model and preparing data that results from a model.  While the loss of 
“dark data” in science is well recognized, we see an analogous problem in the pervasive loss of “dark 
software”.  It leads to wasted investments, particularly for younger researchers that are often charged 
with such tasks, which often go unnoticed.  Third, the inaccessibility of software as an explicit science 
product that, like data, should be shared and reused leads to barriers for those who cannot afford 
such investments, and to barriers for software experts that could otherwise become involved in 
supporting software efforts.  Finally, the education of future scientists crucially depends on the ability 
to actively explore problems by experimenting with science-grade data and software.  This will not be 
possible unless science software is captured and properly disseminated. 
 
In order to facilitate the sharing of software, we are developing semantic software repositories that 
capture an explicit and comprehensive representation of how software components work.  Currently, 
and even when shared in repositories, software is implicitly linked to its documentation, datasets it 
uses or produces, publications, and ultimately scientific theories.  Our work builds on: 1) the semantic 
representations of Wings that support sophisticated provenance-aware software capabilities, 2) 
semantic representations developed of physical variables handled by the software, 3) runtime 
requirements and licenses for use, and 4) novel approaches to describe the internal structure of data 
within a file.   
 
Intelligent workflow systems can use these semantic software repositories to significantly accelerate 
the tempo of scientific research.  They offer significant capabilities to scientists, but they need 
semantic software repositories in order to provide those capabilities.  We are currently investigating 
social and technical challenges involved in creating semantic software repositories and enable the 
widespread use of provenance-aware software and intelligent workflow systems in geosciences. 
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